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An extension of the time-dependent Takagi±Taupin theory to `optical phonon'-

type distortions is presented. By splitting the susceptibility into the contributions

from each atom in a unit cell, modi®cations to the structure factor as well as

lattice parameter are taken into account. The result is a compact, surprisingly

simple, equation with a strong formal similarity to the classical Takagi±Taupin

equation, with the latter included as a special case. Time dependence is explicitly

retained and thus the analysis is applicable to situations where the crystal is

modi®ed on time scales comparable with that for the X-rays to traverse an

extinction depth. A comparison is made between the in¯uence of coherent

acoustic and optical phonons on the diffraction of X-rays. Numerical and

perturbative analytical solutions of the generalized Takagi±Taupin equation are

presented in the presence of such phonons.

1. Introduction

Novel high-brilliance pulsed X-ray sources with pulse dura-

tions in the picosecond or subpicosecond domain have opened

up a new and wide ®eld of research. Processes such as

chemical reactions, phase transitions and crystal lattice

dynamics happen on time scales of the order of a few thermal

oscillation periods, thus in the range of femto- to picoseconds.

For more than two decades, they have been investigated

predominantly with the help of short pulse optical lasers, using

standard optical techniques such as ellipsometry, Brillouin or

Raman scattering (Thomsen et al., 1986; Ruhman et al., 1988;

Bloembergen, 1992; Reitze et al., 1992; Wright, 1994). Visible

light, however, inherently cannot resolve atomic scale features

and it interacts mainly with valence and free electrons. In

comparison, X-rays have suf®ciently short wavelengths to

resolve the atomic structure and interact with the more

localized lower electron shells and are ideal for the investi-

gation of structural dynamics.

The synchronous coupling of X-ray streak cameras to

fourth-generation synchrotrons has enabled such sources to

reach temporal resolutions of a few picoseconds (Larsson,

2001) whilst K� sources based on the electron beams present

in laser plasmas have been demonstrated with pulse lengths

below 300 fs (Rousse et al., 1994). Furthermore, plans for

sources based on free-electron laser technology promise hard

X-rays with even shorter durations (Winick, 1995; Wiik, 1997).

So far a great variety of successful experiments utilizing

time-resolved X-ray diffraction (TRXD) have been reported

from ®elds as diverse as solid-state physics (Rischel et al., 1997;

Larsson et al., 1998; Chin et al., 1999; Rose-Petruck et al., 1999;

Siders et al., 1999; Lindenberg et al., 2000; Reis et al., 2001;

Sokolowski-Tinten et al., 2001; Larsson et al., 2002), chemistry

(Neutze et al., 2001) and biology (Srajer et al., 1996; Perman et

al., 1998; Neutze et al., 2000).

Many of the solid-state experiments have investigated the

modi®cation of nearly perfect crystals, using femtosecond

optical lasers to induce coherent acoustic and optical phonons.

These novel femtosecond X-ray sources allow the study of the

diffraction from such phonons directly in the time domain (in

contrast, for example, to the studies of thermal diffuse scat-

tering, where incoherent phonons are studied in what is in

effect the frequency domain). As single phonon modes, or

narrow spectra of modes, are excited, with populations far

greater than the thermal background, distinct temporal

oscillations in the diffraction signal can be directly recorded.

Coherent acoustic phonons with periods of a few picoseconds

have been observed (Lindenberg et al., 2000). More recently,

coherent optical phonons with periods of a few hundred

femtoseconds have also been observed in the time domain

(von der Linde, 2002). Furthermore, it has been noted that the

generation of coherent phonon or polariton distributions

within crystals may provide a method for switching X-rays on

time scales of order of the inverse of the phonon period

(Bucksbaum & Merlin, 1999).

Given the highly perfect nature of the crystals used for

many of the studies cited above, the theoretical background of

such experiments (Chukhovskii & Colella, 1993; Tomov et al.,

1998) is based upon the dynamical theory of X-ray diffraction.

As the investigated processes usually occur as distortions of
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these perfect crystals, some variant of the Takagi±Taupin

equation is often used (Takagi, 1962; Taupin, 1964; Klar &

Rutichelli, 1973). Unfortunately, not all types of distortions

are covered by the standard Takagi±Taupin theory. The stan-

dard theory can take into account strain ± i.e. modi®cations to

the local lattice parameter ± and thus can be used to model

diffraction from crystals that include low-frequency acoustic

phonons. However, optical phonons principally modify the

structure of the crystal, and as such do not fall within the

standard treatment. As noted above, coherent optical phonons

have already been the subject of interest in recent TRXD

experiments with bismuth (von der Linde, 2002). Therefore, a

theory that also covers this type of distortion is highly desir-

able. In this paper, such a theory is presented. If the crystal is

modi®ed on very short time scales, as it might be by a high-

frequency coherent optical phonon or polariton for example,

the time dependence of the diffraction process itself may

become important (Wark & He, 1994; Chukhovskii & FoÈ rster,

1995; Wark & Lee, 1999; Graeff, 2002; Yamazaki & Ishikawa,

2002). We thus explictly keep time dependence in the treat-

ment presented here.

The paper is laid out in the following manner. In x2, the

generalized Takagi±Taupin equation is derived from ®rst

principles, and a discussion of it follows in x3. In x4, the

generalized Takagi±Taupin equation for coherent single-mode

acoustic and optical phonons is solved numerically, and a

perturbative analytic solution is presented. The range of

applicability of the perturbative solution is discussed.

2. Derivation of the generalized Takagi±Taupin
equation

In classical Takagi±Taupin theory, the assumption is made that

the atoms within a single unit cell are displaced uniformly, i.e.

the atoms 1 to M within an M-atom unit cell are displaced by

the same vector u1 � u2 � . . . � uM �def
u. This allows the

susceptibility ®eld of the distorted crystal ��r; t� to be related

to the susceptibility of the perfect crystal ��p��r�:
��r; t� � ��p��rÿ u�r; t��: �1�

For this reason, the classical Takagi±Taupin equation cannot

be applied directly to non-uniform distortions, by which we

mean those where in principle each atom within a single unit

cell can experience a different displacement (e.g. optical

phonons). That is to say, in general u1 6� u2 6� . . . 6� uM .

As the susceptibility in the case of an M-atom unit cell is

well approximated by the sum of the single-atom suscepti-

bilities, the susceptibility in the case of a non-uniform

displacement can be expressed as

��r; t� � PM
N�1

��p�N �rÿ rN ÿ uN�r; t��; �2�

with rN being the atomic coordinates in a local unit-cell

coordinate system. In what follows, unless stated otherwise, we

will assume that uN is a function of r and t.

The perfect-crystal susceptibilities ��p�N �r� can be expanded

as a spatial Fourier series which leads to

��r; t� �P
h

�0h�r; t� exp�ÿiGh � r�; �3�

where Gh is the reciprocal-lattice vector and

�0h�r; t� �def PM
N�1

�Nh exp�iGh � �rN � uN��; �4�

where �Nh stands for the Fourier coef®cients of the single-

atom susceptibilities,

�Nh �def
Vÿ1

uc

R
dV ��p�N �r� exp�iGh � r�

and Vuc for the volume of the unit cell. In contrast to the

classical Takagi±Taupin theory, the susceptibility component

�0h�r; t� is a function of space and time. Note that at this stage

we have not yet made the assumption that the spatial variation

of the displacement ®elds uN�r; t� from cell to cell is small. As

the displacement of every atom in a unit cell is considered

separately, one doesn't need the assumption of small spatial

frequencies to ensure that the variation of the displacement

vector within a single unit cell is small. At a later stage, we will

make this assumption nevertheless, but for other reasons.

Evidently, when we make the assumption of small spatial

frequencies and further assume u1 � u2 � . . . � uM, we

recover results similar to those of Takagi and Taupin.

The wave equation for the X-ray dielectric displacement

®eld D in a crystalline medium

�Dÿ 1

c2

@2D

@t2
� ÿcurl curl��D� �5�

can be solved as is usual by applying the Bloch-type ansatz

D�r; t� �P
h

D0h�r; t� exp�i�!t ÿ kh � r��; �6�

with the speed of light in vacuum, c, the frequency of the

X-rays, !, the wave vector of the incident wave (in the crystal),

k0, the wave vector of the diffracted wave, kh � k0 �Gh, and

D0h�r; t� �def PM
N�1

DNh exp�iGh � uN�: �7�

The X-ray ®eld amplitudes D0h here are, like the Fourier

coef®cients of the susceptibility, a sum over atomic terms. We

now substitute (7) into the wave equation (5). The subsequent

development and approximations are very similar to those

leading to the classical Takagi±Taupin equation (Takagi, 1969;

Authier, 2001) but are still worth showing to some level of

detail. For the sake of clarity, we study this development for

each of the three terms in (5) in turn:

1. The �D term: If we assume that the displacement ®elds

uN�r; t� and ®eld amplitudes DNh�r; t� at any time vary slowly

in space then second-order derivatives of uN and DNh can be

neglected. Under this assumption, one obtains

�D �P
h

PM
N�1

�ÿ2i�k0Nh � rrr� ÿ k02Nh�

�DNh exp�i�!t ÿ kh � r�Gh � uN��; �8�
where k0Nh stands for the local wave vector

k0Nh �def
kh ÿ rrr�Gh � uN�: �9�



In an analogous way to the assumptions made in Takagi±

Taupin theory, by slow spatial variations in uN�r; t� we mean

that the difference in the displacements of a particular atom in

the basis between one unit cell and its neighbour should be

small compared with the X-ray wavelength.

2. The @2D=@t2 term: Typical temporal frequencies of

diffractable X-rays lie around 1019 rad sÿ1, thus far beyond the

frequencies of phonons or any other kind of distortion.

Therefore, terms of the order of �DNh, �uN , _u2
N and _uNi

_DNhj may

be neglected. With this approximation the result reads:

@2D=@t2 �P
h

PM
N�1

�2i! _DNh ÿ 2!�Gh � _uN�DNh ÿ !2DNh�

� exp�i�!t ÿ kh � r�Gh � uN��: �10�

We would like to draw the reader's attention to the central

term of the right-hand side of (10), which contains the time

derivative of the displacement ®eld. The temporal evolution of

the X-ray ®eld amplitudes DNh takes place on time scales of

order of the extinction depth traversal time

� � �ext=c0 �11�

(Wark & He, 1994; Chukhovskii & FoÈ rster, 1995; Wark & Lee,

1999), where �ext stands for the extinction depth and 0 for the

direction cosine cos 0, with  0 being the angle between k0

and the inner surface normal n. One might initially expect that

this time would be short compared with the evolution of the

atomic displacement ®elds, and thus the central term can be

neglected. However, for weak X-ray re¯ections, extinction

depths can be large (tens or hundreds of mm), and thus the

relevant time scales for the evolution of the X-ray ®eld may

approach or exceed 100 fs ± i.e. the period of optical phonons.

Thus there may well be situations in which this term must be

retained. We keep it in the analysis presented here.

3. The curl curl��D� term: As the electric susceptibility, �,

for X-rays is very small (10ÿ6ÿ10ÿ5), several approximations

can be made here. As with standard Takagi±Taupin theory, we

assume that ®rst-order derivatives of uN or DNh and higher can

be neglected. Physically, this corresponds to the assumption

that the spatial scales upon which these ®elds vary is large

compared with the X-ray wavelength.

With such assumptions, we ®nd:

curl curl��D� � k2
h

P
h;l

�0hÿlD
0
l�h� exp�i�!t ÿ kh � r�� �12�

with

D0l�h� �def
D0l ÿ

kh

kh

kh

kh

�D0l
� �

: �13�

This appears identical to the corresponding term in the clas-

sical Takagi±Taupin equation, but one has to bear in mind that

�0hÿl and D0l are standing for the sums de®ned in (4) and (7).

Putting the above three parts together, and neglecting

terms of the order of @i�Gh � uN�@jDNh, we obtain the gener-

alized time-dependent Takagi±Taupin equation:

2i�kh � rrr�D0h � k2 2i

!

�D0h
@t
� �k2

h ÿ k2�D0h � k2
h

X
l

�0hÿlD
0
l�h�

�14�
with k �def

!=c being the spatial frequency of the X-rays in

vacuum. Note that all sums over N have disappeared owing to

the de®nition of D0h in (7). A discussion of this equation

follows in x3.

3. Comparison with classical Takagi±Taupin theory

Equation (14) looks remarkably similar to the classical time-

dependent Takagi±Taupin equation (Wark & He, 1994;

Chukhovskii & FoÈ rster, 1995). In fact, the classical equation

must be included as the special case for u1 �
u2 � . . . � uM �def

u. This will be demonstrated here, in order

to prove consistency.

If the displacements uN for all atoms N in a unit cell are the

same, the phase factor exp�iGh � uN� is identical for all terms in

the sums in (4) and (7), which can thus be written

�0h�r; t� � �h exp�iGh � u�; D0h�r; t� � Dh exp�iGh � u�; �15�
with Dh being the X-ray ®eld amplitude as it is usually de®ned

in classical Takagi±Taupin theory. Inserting these expressions

into the generalized time-dependent Takagi±Taupin equation

(14), one obtains

2i�kh � rrr�Dh ÿ 2�kh � rrr��Gh � u�Dh � k2 2i

!

@Dh

@t

ÿ k2 2

!
�Gh � _u�Dh � �k2

h ÿ k2�Dh � k2
h

X
l

�hÿlDl�h�: �16�

The above equation is identical to the time-dependent equa-

tion as derived previously (Wark & He, 1994; Chukhovskii &

FoÈ rster, 1995; Wark & Lee, 1999) though care should be taken

in comparison, as using the present notation the previous work

presented equations for D0h�r; t�.
Given that we have demonstrated that (14) describes X-ray

diffraction from crystals with both uniform and non-uniform

distortions, it is of interest to discuss the differences between

the diffraction in the presence of the various distortion types.

The only term where distortions leave their mark in (14) is the

susceptibility coef®cient �0hÿl. In the case of uniform dis-

placements, it has been shown in (15) that this just adds the

phase Gh � u to the complex Fourier coef®cient �h of the

perfect crystal. Thus a uniform displacement ®eld leads to a

pure phase modulation of the susceptibility coef®cient (it is

this phase modulation that in the formulae presented here

corresponds to the deviation from the local Bragg angle that

strain introduces into the standard Takagi±Taupin equations).

A non-uniform displacement, however, will not only change

the phase but also the modulus (see Fig. 1).

A general expression for the displacement of coherent

single-mode acoustic or optical phonons is given by

uN � pN cos�
t ÿ q � r�; N � 1; . . . ;M; �17�
where pN is a constant vector describing amplitude and

polarization, 
 the phonon frequency and q the phonon wave
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vector. In order to be able to take account of the non-uniform

displacement of optical phonons, both displacement vector

and polarization vector have an atomic index N. The

susceptibility �0h can thus be written

�0h �
PM
N�1

�Nh exp�iGh � rN� exp�iGh � pN cos�
t ÿ q � r��: �18�

For small amplitudes jpNj, the second exponential function can

be expanded as a Taylor series where terms of second order

and higher are negligible, leading to

�0h � �h � ��h cos�
t ÿ q � r�; �19�
where

��h �def
i
PM
N�1

Gh � pN�Nh exp�iGh � rN�: �20�

From this expression, it is evident that both optical and

acoustic phonons do not affect the susceptibility coef®cient �0h
if the phonons are polarized parallel to the diffracting planes,

i.e. Gh � pN � 0. In this case, the phonons will not be `visible' in

the rocking curve.

In addition, (19) and (20) reveal that an acoustic phonon,

where p1 � p2 � . . . � pM �def
p and

��ac
h � i�hGh � p; �21�

is incapable of lifting the ban of a forbidden re¯ection,

because if �h � 0, ��ac
h also vanishes. In contrast, an optical

phonon can, in principle, lift the ban, as ��h is not necessarily

zero if �h vanishes (see Fig. 1).

Finally, if one substitutes the expression for �0h from (19)

into the Fourier series (3) of the susceptibility ��r; t�, one

receives

��r; t� � ��p��r� � 1
2

P
h

��h exp�i
t ÿ i�Gh � q� � r�

� 1
2

P
h

��h exp�ÿi
t ÿ i�Gh ÿ q� � r�: �22�

Besides the perfect-crystal susceptibility ��p��r�, which has of

course the periodicity of the lattice, there are two smaller

terms, with slightly modi®ed periodicities. The Laue condition

for these terms reads

kÿ k0 � Gh � q: �23�

Thus, on either side of the rocking-curve peak (kÿ k0 � Gh,

� � �B, �B: Bragg angle), smaller diffraction maxima appear at

�� �def
� ÿ �B

� � q

Gh

�cos � tan �B � sin �� ÿ �r0�1ÿ �
2 sin�2�B�

; �24�

where q stands for the spatial frequency jqj, Gh for the

modulus of the reciprocal-lattice vector, � for the angle

between q and Gh (see Fig. 2) and  for the asymmetry factor

h=0 [h �def
cos h,  h �def ��kh; n�]. The last term in (24)

represents the shift of the Bragg angle due to refraction.

The periodic structures represented by terms 2 and 3

in (22) are not static. Obviously, the structure with reciprocal-

lattice vector Gh � q moves with the speed v� �

�Gh � q�=jGh � qj2, and the other with Gh ÿ q with

vÿ � ÿ
�Gh ÿ q�=jGh ÿ qj2. This becomes important if the

speed of sound is so high that relativistic Doppler effects have

to be taken into account, as may be the case for e.g. polaritons.

We discuss this further in the next section.

4. Perturbative analytical solution of the generalized
Takagi±Taupin equation

In this section, a novel perturbative method to analytically

solve the Takagi±Taupin equation in the presence of a small

periodic distortion is presented. For such a small distortion,

the susceptibility coef®cient �0h can be separated into the

susceptibility coef®cient of the unperturbed crystal �h and a

small perturbation term, e.g. ��h cos�
t ÿ q � r� in the case of

coherent single-mode phonons [see equation (19)]. Because

one can expect that a small perturbation also only has a small

effect on the X-ray ®eld amplitudes D0h, it is useful to separate

them as well: D0h � D
�p�
h � �D0h, where D

�p�
h stands for the ®eld

amplitude in the perfect unperturbed crystal and �D0h for a

small perturbation (we return to these assumptions later in the

section). Inserting these expressions into the generalized

Takagi±Taupin equation (14), making use of the fact that D
�p�
h

is the perfect-crystal solution and neglecting terms of the

Figure 1
Effect of acoustic (a) and optical (b) single-mode phonons on the
susceptibility coef®cient �0h.

Figure 2
Laue condition for a crystal with single-mode phonons (wave vector q).



order ��h�D
0
h, one obtains the following non-homogeneous

linear differential equation system for the perturbation terms

�D0h:

2i

k
�sh � rrr��D0h �

2i

!

@��D0h�
@t
� k2

h ÿ k2

k2
�D0h

ÿ
X

l

�hÿl�D
0
l�h� � cos�
t ÿ q � r�

X
l

��hÿlD
�p�
l�h�: �25�

What has been gained by this? In contrast to the Takagi±

Taupin equation itself, this differential equation system has

constant coef®cients. The only space- and time-dependent

term is the inhomogeneity. Therefore, the solution of this

system is very straightforward. It will be demonstrated here

for the case of two strong waves, where only a single diffracted

wave ®eld D0h exists apart from the incident D00, which corre-

sponds to ordinary Bragg or Laue diffraction. The system of

equations (25) can then be reduced to

2i

k

@��D00�
@s0

� 2i

!

@��D00�
@t
ÿ C� �h�D

0
h

� �� �hC cos�
t ÿ q � r�D�p�h

2i

k

@��D0h�
@sh

� 2i

!

@��D0h�
@t
ÿ C�h�D

0
0 � 2�h�D

0
h

� ��hC cos�
t ÿ q � r�D�p�0

�26�

with s0 and sh being the in general non-orthogonal spatial

coordinates whose axes are parallel to the wave vectors k0 and

kh, C the polarization factor which is 1 for �-polarized and

cos�2�B� for �-polarized X-rays, and ®nally

�h �def k2
h ÿ k2

2k2
ÿ �0

2
: �27�

With the ansatz1

�D0h � d�h exp�i�
t ÿ q � r�� � dÿh exp�ÿi�
t ÿ q � r��; �28�
the differential equation system can be written as an algebraic

system for d�h with the solution:

d�h �
C

2

�h�� �hCD
�p�
h � A0��hD

�p�
0

�A0��Ah � 2�h� ÿ �h� �hC2
; �29�

with

A0 �def �2=k�s0 � qÿ 2�
=!�; Ah �def �2=k�sh � qÿ 2�
=!�:
�30�

The total solution

Dh�r; t� � D
�p�
h � d�h exp�i�
t ÿ q � r�� � dÿh exp�ÿi�
t ÿ q � r��

�31�
is the unperturbed rocking curve given by D

�p�
h plus satellites

on either side at jkÿ k0j � jGh � qj with amplitudes d�h
oscillating with the phonon frequency 
 .

For the exact angular position of these satellites, refraction

effects have to be taken into account. Therefore, in (27) the

wave vectors k0 and kh must be expressed by the vacuum wave

vectors k
�a�
0 and k

�a�
h , i.e.

k0 � k
�a�
0 �

k�0

20

ez; kh � k
�a�
h �

k�0

2h

ez: �32�

This leads to

�h � ÿ���a� sin�2�B� ÿ 1
2�0�1ÿ �: �33�

Attention has to be paid to the fact that the total solution is a

sum of complex ®eld amplitudes and therefore it is vital to use

expressions for the perfect-crystal amplitudes D
�p�
0 and D

�p�
h

with the correct phases.

In Fig. 3, we show the results of the calculation of the

rocking curve for Bragg re¯ection from 10 mm thick InSb 111

(angle of asymmetry � � 5�, � � 1:5406 AÊ , � polarization)

distorted by coherent longitudinal acoustic phonons propa-

gating perpendicularly to the crystal surface with spatial

frequency jqj � 108 rad mÿ1, temporal frequency 
 �
3:75� 1011 rad sÿ1 and strain amplitude �0 � 0:1%. The

agreement between the perturbative solution and the full

numerical solution of (14) is excellent ± indeed, the difference

between the two solutions lies within the accuracy of the

numerical algorithms employed and cannot be seen on the

scale of the graph.

One advantage of such an analytical solution is the ability to

see immediately the in¯uence of certain physical parameters.

For example, the explicit time dependence represented by the

time derivatives @tD0 and @tDh, which leads to the 
=! terms

in A0 and Ah, only plays a role if the phonon frequency 
 is of

comparable order with the X-ray ®eld frequency !, i.e. if the

phonon phase velocity is a non-negligible fraction of the speed

of light. This could, for example, occur in the presence of

polaritons. The major effect of these terms on the rocking

curve is the angular shift of the satellites, either away or

towards the centre of the rocking curve. The direction of shift

depends on whether the phonon (polariton) has a velocity

component parallel or anti-parallel in the direction of the

reciprocal-lattice vector Gh. If the component is anti-parallel,

the satellites will move towards the central peak, if it is parallel

they will move away. This effect can be understood in terms of

the simple wave-vector-matching scheme introduced in x3.

The structures with reciprocal-lattice vectors Gh � q move
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Figure 3
Comparison between the full numerical and the perturbative solution for
Bragg diffraction from a single crystal in the presence of a coherent
acoustic phonon for the conditions stated in the text.
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now at a speed level that relativistic Doppler effects come into

play. The structure with Gh � q moves towards the crystal

surface and sees a blue-shifted incident X-ray wave, the

structure with Gh ÿ q moves into the crystal bulk and thus

sees a red shift. In order to quantify this effect, one has to ful®l

the Laue condition in the rest frame of each structure and then

perform a Lorentz transformation into the rest frame of the

crystal. The Laue condition in the respective rest frames

k0 ÿ k00 � G0h � q0; k00 ÿ k000 � G00h ÿ q00 �34�
Lorentz transformed results in

�K� � 2

c2

q�Gh

jq�Ghj2

�!ÿ
�; �35�

with the Doppler shift �K� �def
Kÿ �Gh � q� of the scattering

vector K �def
kÿ k0. Under the assumption that jqj � jGhj,

this leads to the angular shift

��� � �2 tan �B�
�!ÿ
�=�c2G2
h�� �36�

of the satellites. A more illustrative, but only qualitative, way

of looking at the problem is from the viewpoint of the incident

X-ray wave propagating `only' at the speed of light. If the

phonon moves at least partially into the same direction, the

X-rays see a longer phonon wavelength because, in the time it

takes the X-rays to travel e.g. from one amplitude maximum to

another, the second maximum will have moved further away

from the point where the X-rays have intercepted the ®rst.

Correspondingly, the X-rays will see a shorter phonon wave-

length if the phonon moves towards the incident X-rays.

The analytic solution includes an arbitrary direction of

propagation for the phonon. The numerical solution of this

case is computationally expensive because the full spatially

two-dimensional Takagi±Taupin equation has to be solved

rather than a reduced one-dimensional variant for only depth-

dependent strain (Klar & Rutichelli, 1973; Gronkowski, 1991).

The analytic solution is in principle far simpler in such cases

and may be of use in a study of the proposed phonon±Bragg

switch (Bucksbaum & Merlin, 1999).

Finally, the perturbative approach has the great advantage

of allowing a direct decomposition of a measured rocking-

curve pro®le into the contributions from coherent phonons in

different modes. Because the differential equation (25) for

�D0h � D0h ÿD
�p�
h is linear, the contributions from different

modes simply superimpose. This allows us to use e.g. a least-

squares algorithm to ®t the modulus of a sum of those

analytical solutions for a set of relevant phonon modes to a

measured rocking curve, which directly reveals information

about the modes' occupation numbers. The ®tted solution may

be ambiguous to a certain extent though, since the measured

rocking curve lacks phase information.

Obviously, the perturbative solution becomes less accurate

with increasing strain amplitude as the the realization of the

basic assumption j��hj � j�hj gets worse. The assumption

works well for strains up to a few tens of a percent, depending

on where the satellites are located, i.e. what spatial frequency

jqj the phonons have. In our studies to date, we have found

that the perturbative solution is reasonable if the maximum

intensity of the satellites does not exceed 10% of that of the

main peak.

Care must also be taken in using the perturbative solution

in the case where the sidebands are not well separated in angle

from the main peak. This will clearly occur for phonons with

wavelengths comparable to or longer than an extinction depth.

Under such circumstances, the incident X-rays will not interact

with many wavelengths of the periodic disturbance, and the

solutions to the equations for the main peak cannot be

decoupled from those of the sidebands. This can be seen in Fig.

4, where we show the perturbative and numerical solutions for

low-frequency coherent single-mode acoustic phonons ±

evidently it is not safe to use the perturbative solution when

the sidebands are only separated in angle from the main peak

by of order a rocking-curve width.

Another case where the perturbative solution becomes

inaccurate is if the crystal is thin enough to show Laue oscil-

lations. In this case, the deviation is of the order of the Laue

oscillation amplitude.

5. Conclusions

An extension of the Takagi±Taupin theory has been presented

that can deal with distortions altering not only the lattice

parameter but also the crystal structure. This is particularly

important in the ®eld of ultrafast molecular and interatomic

dynamics, where optical phonons play an important role, e.g.

in the form of soft modes during phase transitions or as a

potential scheme for an ultrafast Bragg switch (Bucksbaum &

Merlin, 1999). Fortunately, the generalized Takagi±Taupin

equation turns out to be no more complex than the classical

equation. It is even slightly more intuitive as the distortion

affects directly the susceptibility, the parameter which de®nes

the X-ray diffraction properties of a crystal.

In the case of small distortions, the generalized Takagi±

Taupin equation can be solved analytically using a novel

perturbative approach. This has been demonstrated for

acoustic and optical phonons for the most important case of

Figure 4
Comparison between the full numerical and the perturbative solution for
Bragg diffraction from a single crystal in the presence of a low-frequency
coherent acoustic phonon with jqj � 5� 106 rad mÿ1, 
 �
1:875� 1010 rad sÿ1, and �0 � 0:01%. Otherwise, the parameters are
the same as in Fig. 3.



two strong X-ray wave ®elds. In principle, this analytical

solution can be used to directly decompose a measured

rocking-curve pro®le into the contributions from different

phonon modes. It shows that explicit time dependence of the

X-ray wave ®elds has to be taken into account if the speed of

sound is a non-negligible fraction of the speed of light, as e.g.

can be the case for polaritons. The effect is a de- or increased

effective spatial phonon frequency jqj owing to a simple

Doppler effect which is also understandable in terms of simple

wave-vector-matching considerations.
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